JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 7, July 2008, p. 1740 - 1744

Persistent currents in disordered rings
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Numerical calculations are performed to determine how persistent currents in mesoscopic metallic rings are affected by a
diagonal disorder. We use a tight—binding model with long—range hoppings and the hopping integrals are assumed in such
a way, that the resulting electron dispersion relation is almost the same as for free electrons. We analyze one— and two—
dimensional rings. We discuss the dependence of the amplitude of the persistent current on the concentration of impurities

and on their potential.
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1. Introduction

There is a well-known problem connected with the
amplitude of the persistent currents in mesoscopic rings.
Namely, apart from ballistic regime, the magnitude of the
measured current is two or three orders higher than
predictions from one—electron theory.[1] On the other
hand, currents measured in semiconductor rings with mean
free path bigger than their circumference, remain in a good
agreement with theory.[2] The last statement holds true
even if the theoretical approach neglects the Coulomb
interactions between electrons in the ring. It may suggest
that the discrepancy that occurs for diffusive rings
originates mainly from inadequate description of the
influence of the disorder, rather than from the poor
description of the electron-electron interactions. Still, there
are many papers which demonstrate that this interaction
can significantly enhance the current.[3] Therefore, it
would be very useful to carry out calculations that account
also for the Coulomb interaction. Unfortunately, it usually
puts significant limits on the accessible size of the system
under investigation (e.g. exact diagonalization[4]) or
introduces hardly controllable, especially in low
dimensional systems, approximations (e.g. mean-field type
approaches). Therefore, in the present paper we focus on
the role which disorder plays in small rings, being aware
that our results can be modified when the Coulomb
interactions are taken into account. We use a tight-binding
Hamiltonian with long-range hopping and a diagonal
disorder to describe one— and two—dimensional ring
pierced by a magnetic flux. The hopping integrals are
calculated from the condition that the resulting dispersion
relation accurately fits that of the free electron gas. With
the help of numerical diagonalization of the Hamiltonian
we investigate how the persistent current depends on the
disorder present in the ring.

The disorder in a ring can be characterized by the electron
mean free path l. It is known that the typical current (root
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mean square current, | typ:<| »'7) in a metallic ring is

proportional to the mean free path I.[5] Depending on the
realization of the disorder different formulas for | can be
used and the comparison of the theoretical predictions with
the numerical results can give us some information
concerning the applicability of these formulas.

2. The model

The rings are described by the following tight-binding
Hamiltonian
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Here, t.. is the hopping integral between sites i and j,
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CiTc creates an electron with spin ¢ at site i of the ring,

n CT c. and & describes the disorder. The magnetic
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flux enters the Hamiltonian through the Peierls phase

factor Gi i describing the orbital response of the system to

an external magnetic field:
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where d)O:hC/e is the flux quantum.

Our aim is to describe electrons moving in a metallic
ring, where, apart from scattering by impurities, in the
vicinity of the Fermi level they behave like nearly free
electrons. Therefore, the hopping integral tii is non-zero

]
not only for nearest neighboring sites i and j. Instead, we

allow for long-range hoppings, choosing the values of tij

in such a way, that the resulting dispersion relation is close
to that for free electrons. In the case of a two—dimensional
ring the procedure consists in minimization of a function
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with respect to {t(n) }. Here, t(O)Etii is the atomic level in

the absence of the disorder, t(l) stands for ti j for nearest—

neighboring (i.j), t(z) for next—nearest—neighboring (i.j),
and so on, and E(t(l),:t(z),:t(3),:...;:kx,:ky) denotes the

Fourier transform of tij for a given set of t(n)’s. Relation

(3) also defines the energy unit as h2/2m. In an analogous
way the hopping integrals have been determined for one—
dimensional rings.

It has been shown in Ref. [6] that in two— and three—
dimensional rings the persistent current as a function of
the magnetic flux strongly and irregularly depends on the
number of electrons. This effect originates from numerous
crossings between the energy levels. Each such a crossing
leads to a jump in the flux dependence of the current. For a
parabolic dispersion relation the low—laying states do not
cross apart from (D:nfbo and these jumps do not occur in

systems with low carrier concentration. Therefore, in order
to avoid this drawback, we have restricted further analysis
to systems with only two electrons with opposite spins.
Since we neglect the many—body effects, this restriction
does not strongly affect the results. This assumption has
another advantage connected with this form of the
dispersion relation. In a small ring its width limits the

number of allowed hopping integrals t(n) and therefore
fitting to parabolic dispersion relation is not possible over
the whole Brillouin zone. Fortunately, if there are only few
electrons in the ring, only shape of the bottom of the band
matters. Therefore, the cosine functions occurring in the
Fourier transformation of tij have been expanded around

the point (kx,:ky):(O,:O)
then fitted according to Eq. 3. It assures that at least at low

temperature the lattice electrons will behave like free
particles.

in two—dimensional case, and
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Fig. 1. Comparison of the dispersion relation for

electrons described by a thigh—binding Hamiltonian with

hoppings up to 18th nearest neighbors (solid line) with
that of free electrons (dotted line).

Fig. 1 shows a comparison of two—dimensional
dispersion relation obtained by taking into account all
hoppings at range up to 18 lattice constants with a
parabolic one and Figure 2 shows the difference between
these two dispersion relations. The quality of the fit can
also be seen in Figure 3, where the resulting density of
states is compared to that of free electrons.

Fig. 2. Deviation of the tight-binding dispersion relation
from that for free electrons f(kx,ky) (Eq. Error!

Reference source not found.) for momentum from the
first Brillouin zone.
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Fig. 3. Comparison of the density of states for electrons

described by the hopping term with hoppings up to 18th

nearest neighbors (A) fitted to free electron dispersion

relation (B). The dotted line (C) shows the density of

states for lattice electrons with only the nearest neighbor
hoppings.

3. Numerical results

The typical current | typ in a disordered ring depends

on the actual realization of the disorder. In order to
analyze this influence we have carried out simulations in
two cases. First (case A), when there are some randomly
chosen lattice sites (impurities) with atomic level shifted
by a given energy with respect to the rest of the sites. We
change both the concentration of the impurities as well as
their potential (which is common to all of them). Such a
system can be called a binary alloy.

In this case the electron mean free path within the
Born approximation is[7]
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where n; is the concentration of impurities and U is the

impurity potential, i.e., the atomic level of sites occupied

by the impurities is given by 8imp:s+U, where ¢ is the

common atomic level of the rest of the sites.

In the second case (case B, the Anderson model), the
atomic levels of all sites are randomly chosen from a range
of (-W/2,W/2), where W determines the strength of the
disorder. Since the persistent current strongly depends on
the distribution of impurities or configuration of energy
levels, for each set of parameters we have carried out
numerous (up to one hundred) simulations, each time
randomly generating disorder. Then the results were
averaged over disorder realization. In this case elementary
scattering theory says that the electron mean free path is[8]
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W

3.1 One-dimensional ring

In a one—dimensional ring consisting of N lattice sites
we have taken into account all possible hoppings. Namely,
using one—dimensional version of Eq. 3 we have
determined N/2 hopping integrals. Figure 4 presents results
for a disorder of type A: the lines show the typical current
| as a function of the concentration of impurities n..
"ltﬁg current is averaged over 100 randomly generated
configurations of the impurities. Different lines correspond
to different values of the impurity potential U (upper
panel) and to different impurity concentrations (lower
panel). The inset in the lower panel shows a comparison of
the results obtained for the model with hoppings up to 18th
neighbor with results for the nearest neighbor hopping.
Since the bandwidth is different in these cases, it is not
obvious how to compare such results. It has been argued in
Ref. [6] that taking into account long-range hopping
integrals leads to an enhancement of the persistent current
by an order of magnitude. However, the authors used the
nearest neighbor hopping integral as the energy unit and
all the long-range hopping integrals were positive. As a
result in the case of long—range hoppings the bandwidth
was much larger than for the nearest neighbor hopping and
the ratio of the strength of the disorder to the bandwidth
was much smaller. This can explain the enhancement of
the persistent current. In order to avoid such a situation, in
the case of only the nearest neighbor hopping we have
assumed such a hopping integral which, in the absence of
the disorder, gives the same value of the current as
obtained for long—range hoppings. It can be easily shown
that the assumption of the hopping integrals according to
Ref. [6] leads to currents one or two orders of magnitude
larger than within our approach. However, this
enhancement occurs even in the absence of a disorder, i.c.,
for rings in the ballistic regime, where the magnitude of
the observed current agrees reasonably well with a simple

one—clectron theory. Additionally, if the energy unit in the
approach proposed in Ref. [6] is chosen in such a way that
the typical current in the absence of the disorder is the
same as in our approach, the dependence of the current on
the strength of the disorder in both these approaches is
almost the same.
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Fig. 4. Typical current averaged over 100 realizations of
the disorder as a function of the impurity concentration
(upper panel) and of the impurity potential (lower panel).
Results obtained for a one-dimensional 36-site ring. The
tails visible in the lower panel for high impurity
concentrations are artifacts of the numerical procedures
and originate from the long distance hoppings. They do
not occur in the case of only the nearest neighbor
hopping. The inset in the lower panel shows a
comparison of the current for long-range hopping (solid
lines) with results for the nearest neighbor hopping
(dashed lines) for n; equal to 2.8% and 30.6%. See text

for details.

Fig. 4 presents data plotted in log-log scale.
Therefore, if the simple approximation that leads to Eq. (4)
was valid, and the system was in a diffusive regime, where
<|typ>°d’ the lines in both panels in Fig. 4 would be

straight ones and parallel to themselves. Fig. 4 suggest that
even for a medium values of U and n; Eq. (4) cannot be

applied to our system.

A slightly different situation occurs when the system
is described by the Anderson model (case B). Figure 5
shows the typical current as a function of the disorder
strength W. For W of the order of the bandwidth the results

can be fitted by (I typ)ocW_X but with X much larger than 2,

what is in disagreement with Eq. (5). In fact, the section of
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the curve which is straight in the log—log plot, can be fitted
with X=4, what indicates much faster suppression of the
typical current by the disorder. Also in the case of the
Anderson model, the correctly scaled results for only the
nearest neighbor hopping (indicated in Figure 5 by the
open circles) are almost indistinguishable from these for a
long—range hopping.
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Fig. 5. Typical current averaged over 100 realizations of
the disorder as a function of the disorder strength.
Results obtained for a one-dimensional 36-site ring with
site energies randomly chosen from a box distribution of
width W. The solid line indicates results for long range
hopping and the open circles for the nearest neighbor

hopping. The dashed lines are of the form wX,

3.2 Two—-dimensional ring

Figs. 6 and 7 demonstrate the typical current as a
function of the disorder strength. As expected, the
reduction of the persistent current by disorder in the two
dimensional case is less pronounced than for purely one
dimensional rings. This can be inferred from the slopes of
curves presented in Figs. 5 and 7. In the case A, the slope
of curves plotted in the log—log scale strongly depends on
the concentration of impurities what, similarly to the 1D,
visibly differs from the bahavior expected on the basis of
the Born approximation. As can be inferred from Fig. 6
long range hopping integrals do not influence the
qualitative dependence of the persistent current on the
impurity potential.
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Fig. 6. The same as in Fig. 5, but for a 36x6 ring. The
current has been averaged over 20 realizations of the

disorder.
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Fig. 7. The same as in Fig. 5, but for a 36x6 ring. The
current has been averaged over 20 realizations of the
disorder.

4. Concluding remarks

We have investigated the persistent current in a
disordered one and two dimensional rings pierced by an
external magnetic flux. Our aim was to find out whether
the free electron dispersion relation suitable to describe
metallic rings may suppress the reduction of the persistent
current by disorder and explain the discrepancy between
the experimental and theoretical results. Such a possibility
has been suggested in Ref. [6], where the long range
hopping has been included. Our results lead to an opposite
conclusion. Although the long-range hopping integrals
modify the magnitude of the persistent current, its
dependence on the disorder remains almost the same as for
the nearest neighbor hopping. This difference may
originate from the choice of the hopping integrals. In Ref.
[6] all the hopping integrals are positive, whereas our
fitting procedure leads to positive as well as negative
hopping integrals.
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